Global C∞ Irregularity of the ∂̄–neumann Problem for Worm Domains

نویسنده

  • MICHAEL CHRIST
چکیده

where ρ is a defining function for Ω, = ∂̄∂̄∗ + ∂̄∗∂̄, u, f are (0, 1) forms, and denotes the interior product of forms. Under the stated hypotheses on Ω, this problem is uniquely solvable for every f ∈ L(Ω). The Neumann operator N , mapping f to the solution u, is continuous on L(Ω). The Bergman projection B is the orthogonal projection of L(Ω) onto the closed subspace of L holomorphic functions on Ω, and is related to N by B = I − ∂̄∗N∂̄. N and B are C∞ pseudolocal if Ω is strictly pseudoconvex, or more generally, is of finite type [Ca1]. Both preserve C∞(Ω) under certain weaker hypotheses [BS2], [Ca2]. For any pseudoconvex, smoothly bounded Ω and any finite exponent s, there exists a strictly positive weight w ∈ C∞(Ω) such that the Neumann operator and Bergman projection with respect to the Hilbert space L(Ω, w(x)dx) map the Sobolev space H(Ω) boundedly to H(Ω), for all 0 ≤ t ≤ s [K1]. It has remained an open question whether N and B, defined with respect to the standard metric, preserve C∞(Ω) without further hypotheses on Ω. An affirmative answer would have significant consequences [BL].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Global Irregularity in the ∂̄–Neumann Problem

The Bergman projection on a general bounded, smooth pseudoconvex domain in two complex variables need not be globally regular, that is, need not preserve the class of all functions that are smooth up to the boundary. In this article the construction of the worm domains is reviewed, with emphasis on those features relevant to their role as counterexamples to global regularity. Prior results, and...

متن کامل

A Remark on Irregularity of the ∂-neumann Problem on Non-smooth Domains

It is an observation due to J.J. Kohn that for a smooth bounded pseudoconvex domain Ω in C there exists s > 0 such that the ∂-Neumann operator on Ω maps W s (0,1)(Ω) (the space of (0, 1)-forms with coefficient functions in L -Sobolev space of order s) into itself continuously. We show that this conclusion does not hold without the smoothness assumption by constructing a bounded pseudoconvex dom...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

IRREGULARITY OF THE BERGMAN PROJECTION ON WORM DOMAINS IN C n

We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996